Vnode Layering Changes in NetBSD Version 1.5

William Studenmund

November 29, 1999

Veridian MRJ Technology Solutions
NASA Ames Research Center

In this paper, I describe changes to the vnode layer in NetBSD[1] between
versions 1.4 and 1.3 to assist layered filesystems. The major feature of these
changes on the whole is that layered filesystems are now sufficiently robust
for production applications|3]. These changes divide readily into three groups:
modifications to vnode locking along the lines suggested by Heidemann in 2],
changes to the vnode locking protocol, and the introduction of an overlay filesys-
tem. In addition to describing these changes, I will describe the testing we have
performed. :

When starting work on the data migration layer [3], I evaluated a number
of technologies. The stacked file systems of NetBSD looked promising, espe-
cially the null layer. nulifs. Unfortunately it did not perform well under load.
Multiple concurrent access, either simultaneously accessing the stacked and the
underlying laver or multiple accesses of the upper layer (say with a multiprocess
make invoked with the make -j command) would result in kernel panics due to
locking protocol errors.

I made two main changes to the vnode locking implementation. The first was
to ensure that nullfs respected the locking protocol: that it obtains all locks from
bottom to top and that the VOP_LOOKUP operation foregoes attempting to
generate a null layer vnode when looking up the “.” path component.

The more dramatic change is to implement the shared vnode lock scheme de-
scribed by Heidemann(2] as part of his coherence management proposals. With
this change. rather than having a vnode (or the associated fs-private storage
as done by FreeBSD[4]) provide a lock structure for use by the lock manager,
it provides a pointer to a lock structure. For a leaf node (a node on a typi-
cal filesystem), it points to the lock structure in that vnode. For a vnode in a
stacked filesvstem, it points to the lock structure in the underlying layer. In this
manner, the entire stack will lock and unlock at the same time. Additionally,
a lavered filesystem only needs this pointer to perform locking operations - it
does not need to call underlying filesystem layers. If a filesystem performs vn-
ode locking other than a call to the lock manager (such as the union filesystem
which merges two filesystems, or the NFS filesystem which performs no vnode



locking), it exports a NULL pointer and layered filesystems explicitly call its
locking rourines.

Two aspects of NetBSD’s vnode locking protocol make proper layered filesys-
tem operation challenging. The first is that there was a flaw in the VOP_LOOKUP
operation’s error case handling. In case of a returned error, the vnode for the
parent directory is defined as being locked. The flaw is that looking up the “..”
path component requires unlocking and re-locking the parent directory. In case
of an error re-locking the parent, there was no way to communicate to the caller
that the parent was unlocked. If one of the traversed layers is a union layer (a
laver which breaks -he ability to share one common vnode lock), then vnode
lavers stacked above it can get into inconsistent lock states and create deadlock
situations. This potential is eliminated by adding a new flag to those passed
as part of the lookup operation, PDIRUNLOCK. This flag being set upon exit
to the lookup call indicates that the parent directory was unlocked, preventing
such inconsistent states. Additionally the layered lookup routine is simplified
as this flag is set even when not looking up the “..” path component.

The second difficult aspect is that a number of VOP operations will auto-
matically delete a reference count on a passed-in vnode. This behavior simplifies
a number of caller routines, but greatly complicates layered filesystems. It has
been worked around by layered filesystems explicitly adding references to a vn-
ode before such a VOP operation down to the underlying layer. This behavior
is inefficient. and does not scale well to many layers stacked atop each other.
Additionally certain operations which create new vnodes (VOP_CREATE for
example) will also delete the reference to the newly created vnode. There is
an on-going project which is scheduled to be merged into the NetBSD source
for 1.5 to change all such operations to no longer automatically release vnode
references. FreeBSD has already merged in many such changes.

The third area of layering change is the introduction of the overlay layered
filesystem. It is similar to the null layer, except that it does not create a new im-
age of the underlying vnodes, it places itself between the underlying filesystem
and all future access. This layer is very useful for a certain class of problems
where the layered filesystem needs to strictly control access to the underly-
ing files. One such example is the data migration layer we have developed|3]
where we need to prevent processes (even root ones) from noticing that we have
migrated their files to tape storage. Another application would be the devel-
opment of new access control or security methods where the layered filesystem
could (and definitionaly would need to) totally control access to the files.

As part of this change, most of the null filesystem was moved into a generic
set of routines for all layered filesystems which was located in sys/miscfs/genfs.
These routines permit the null, umap, and overlay layers to share a large amount
of code. Only the individual mount and unmount routines and vfs data struc-
tures are not shared.

The tests for these changes were not complicated. As mentioned above, most
any simultaneous access would panic a kernel. Thus the simple test regime we
used consisted of making multiple null mounts of a given leaf filesystem and
generating simultaneous access both in all null layers and in the underlying



file store. In one filesvstem (either the underlying filesystem or one of the null
layers), I ran a make -j 10 kernel compile, and in the others I performed
multiple hierarchical file accesses, such as Is -IR. An unmodified kernel would
panic readilv (in fact the make -j 10 alone in a null layer would generate a
panic), while an updated kernel had no difficulty.

In conclusion, this paper describes changes to the NetBSD vnode system
made between versions 1.4 and 1.5 which have greatly improved the stability
and robustness of layvered filesystems. The method of locking layered vnodes has
been improved, the VOP protocol has been modified to not present difficulties
to layered filesystems. and a new class of layered filesystems has been introduced
with the overlay filesvstem. On the whole, these changes have opened up new
layered filesvstem opportunities within NetBSD.

References
[1] http:// www.netbsd.org/

[2] John Shelby Heidemann. Stackable Design of File Systems. Ph.D. disserta-
tion, University of California, Los Angeles, 1995.

[3] William R. Studenmund. DMFS - a Data Migration Virtual Filesystem Layer
for NetBSD. Submitted for presentation at USENIX 2000.

[4] http://www freebsd.org/



